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Jarzynski equality: Connections to thermodynamics and the second law
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The one-dimensional expanding ideal gas model is used to compute the exact nonequilibrium distribution
function. The state of the system during the expansion is defined in terms of local thermodynamics quantities.
The final equilibrium free energy, obtained a long time after the expansion, is compared against the free energy
that appears in the Jarzynski equality. Within this model, where the Jarzynski equality holds rigorously, the free
energy change that appears in the equality does not equal the actual free energy change of the system at any
time of the process. More generally, the work bound that is obtained from the Jarzynski equality is an upper
bound to the upper bound that is obtained from the first and second laws of thermodynamics. The cancellation
of the dissipative (nonequilibrium) terms that result in the Jarzynski equality is shown in the framework of
response theory. This is used to show that the intuitive assumption that the Jarzynski work bound becomes
equal to the average work done when the system evolves quasistatically is incorrect under some conditions.
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I. INTRODUCTION

Only a few relations are exactly satisfied for processes in
systems far from thermodynamic equilibrium. Of the most
recent of these relations is the Jarzynski equality, which re-
lates the nonequilibrium average work done by a driving
force on a system initially at equilibrium to the free energy
difference between two equilibrium states of the system. This
equality was first derived classically by Jarzynski [1-3] and
later extended to stochastic system by Crooks [4]. Quantum
mechanical Jarzynski equalities have also been investigated
by Mukamel [5] and Esposito and Mukamel [6]. The Jarzyn-
ski equality has also been extensively tested numerically and
analytically for various models; e.g., Marathe and Dhar [7]
studied spin systems, while Oostenbrink and van Gunsteren
[8] studied the redistribution of charges, creation and annihi-
lation of neutral particles, and conformational changes in
molecules. In each case the Jarzynski equality was con-
firmed. The Jarzynski equality has also been extensively
tested for ideal gas expansions by Pressé and Silbey [9], Lua
and Grosberg [10], and Bena, Van den Broeck, and Kawai
[11]. Finally, the Jarzynski equality has been verified experi-
mentally by Liphardt et al. [12] by stretching single RNA
molecules.

On the other hand, the validity of the Jarzynski equality is
still under debate. For example, see the objections of Cohen
and Mauzerall in Refs. [13,14]; in particular, one of their
concerns involves the temperature appearing in the Jarzynski
equality,

(eP"y = % = o Py, (1.1)

where W is the work done by the system for a process that
brings the systems from an equilibrium initial state with
work parameter a to a final state with work parameter b, (- - )
is a nonequilibrium average, B=1/(kzT), and AA; is ob-
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tained, as above, by the ratio of two canonical partition func-
tions defined at the same temperature, but for the two differ-
ent work parameters a and b. Their claim was that the
temperature in the last equation is defined without founda-
tion since the temperature is undetermined during irrevers-
ible processes and often differs from the initial temperature.
Although this statement is correct, it is equally clear that the
Jarzynski equality is exact provided that the system is ca-
nonically distributed initially and that g is defined in terms
of the initial equilibrium temperature of the system. In fact,
the derivation by Jarzynski in Ref. [3] is fairly general and,
at least in the original presentation, is based solely on Liou-
ville’s theorem, when the free energy change describes the
system plus any bath, although in the event that the bath is
explicitly included in the dynamics several complications
arise—specifically, in extracting the system free energy
change from the total and with the identification of work and
heat exchange between system and bath [15].

In this work, we accept the Jarzynski relation as a math-
ematical identity and note that it has been recognized as a
tool for calculating free energies [8,16]. Here, we study the
connections between the Jarzynski equality and nonequilib-
rium thermodynamics. We will focus on systems that are
governed by Hamiltonian dynamics. For such systems, the
process driven by external forces is always adiabatic since
the Hamiltonian presumably contains everything, and pro-
vided Liouville’s equation is valid, the derivation of the iden-
tity in Ref. [3] shows unambiguously that (") is equal to
the ratio of two partition functions defined at the same tem-
perature. As above, we call this ratio e#*4/. One of the ques-
tions we will answer in this paper is the following: In gen-
eral, how is AA; related to the true free energy changes at the
end of the process, where, as pointed out in Ref. [13], the
temperature, if it can be defined, has usually changed. More-
over, it is sometimes believed that the Jarzynski equality can
be used to prove thermodynamics bounds [11] (i.e., the sec-
ond law) from mechanics. We will show here that this is not
true. These questions will be addressed both generally using
thermodynamics or response theory and within the context of
some of the simple numerical models considered in the lit-
erature.

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.75.011133

BENOIT PALMIERI AND DAVID RONIS

We will also show how the Jarzynski equality works in
the context of response theory. In particular, we will show
that the nonequilibrium average of the work equals —AA;
plus so-called dissipative terms. These dissipative terms are
then successively canceled by the higher-order cumulants of
the work. Response theory also provides a framework which
will then be used to derive the specific conditions under
which —AA; becomes the true upper bound to the average
work. More specifically, we show that when the process is
quasistatic and leaves the basic quantities that define the en-
semble (e.g., temperature, density, chemical potential, etc.)
unchanged, the Jarzynski work bound becomes the lowest
upper bound to the work; in that case, the dissipative terms
vanish. For other kinds of processes, in particular for adia-
batic ones like the one-dimensional (1D) expanding ideal
gas, the Jarzynski work bound is an upper bound to the ther-
modynamic work upper bound, no matter how slowly the
process is carried out. This fact has already been noted nu-
merically by Oberhofer, Dellago, and Geissler [16] when
they compared numerical schemes for calculating equilib-
rium free energies based on the Jarzynski equality to those
computed using the Widom insertion method in a soft-sphere
liquid [17]. This was also observed by Jarzynski [2] for the
isolated harmonic oscillator model where the natural fre-
quency is increased as a function of time. Here, we show this
results from general thermodynamic considerations or within
the context of response theory.

The paper is divided as follows. In Sec. II, we define the
one-dimensional gas model and we calculate the full non-
equilibrium distribution function when the gas is expanding.
Within this exactly solvable model, we characterize the ac-
tual state of the system during and after the expansion in
terms of local thermodynamic quantities and we compare the
final-state free energy with AA;. In Sec. III, we compare the
work bound obtained from the Jarzynski relation, invoking
the Gibbs-Bogoliubov-Jensen-Peierls inequality, against the
work bound imposed by thermodynamics and we show that
Jarzynski’s bound is less restrictive. Within the ideal expand-
ing gas model, we calculate the average work as a function
of the rate of the expansion and we compare the final free
energy difference with AA;. In Sec. IV, we use response
theory to show how the Jarzynski equality works and, in
particular, how the nonequilibrium terms cancel. We also ex-
plain how the dissipative terms can contribute to the work
even if the process is carried out quasistatically. We also
argue that this contribution of the dissipative terms could be
used to explain why the average work does not equal —AA,
in Fig. 3 A of Liphardt et al. [12] when the work is per-
formed very slowly. Section V contains a discussion and
some concluding remarks.

II. ONE-DIMENSIONAL EXPANDING IDEAL GAS

In this section, we consider the one-dimensional expand-
ing ideal gas. As has been shown by many authors [9-11],
this model is fully consistent with the Jarzynski equality with

AA;=—kgT; In(L,/L;), 2.1)

where T; is the initial temperature of the gas, kp is Boltz-
mann’s constant, and L; and L, are the initial and final
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lengths of the box confining the gas, respectively. Here, AA;
represents the free energy difference between two states at
the same temperature, but having different lengths. To follow
the expansion of the gas, we work with the same model as in
Refs. [10,11], which were inspired by the earlier work of
Jepsen [18] and of Lebowitz and Percus [19]. In this model,
the gas is initially at equilibrium in a box of length L=L,.
This box is closed from the left by a hard wall and from the
right by an infinitely massive piston. At time =0, the piston
starts to move to the right with velocity V. Here, we will
investigate the nonequilibrium process and see how it is re-
lated to AA;. As mentioned above, this model as already
been studied in detail in Refs. [10,11]; here, we use it to
study several issues that were missed in these references—in
particular, how the quasistatic limit arises, how the work
relates to the maximum work predicted by thermodynamics,
and what, if anything, the work distribution is really telling
us about the actual state of the system. The ideal gas model
here is used to raise questions, which will be investigated in
more general terms in Secs. III and IV.

The complete knowledge of the system for >0 can be
obtained from the nonequilibrium distribution function
Sf(x,ust), where, as usual, x is the position and u the velocity
of the gas. For the expansion of the ideal gas, this distribu-
tion function can be obtained by solving the Liouville or
Boltzmann equation [20,21] with no external forces and, of
course, no collisions—i.e.

f (x,u;1) Af (x,u;1)
+u =
ot ox

0, (2.2)

with the boundary conditions
S(L;+ Viu;t) = f(L;+ Vi,2V — u;t) (2.3)

for u>V and

fO,u31) = f(0,— us1)

for all u. These boundary conditions account for the change
in velocity of a gas particle hitting the piston at x=L;+ V# [cf.
Eq. (2.3)] or the stationary wall at x=0 [cf. Eq. (2.4)]. As in
the general presentation of the Jarzynski relation, we assume

(2.4)

that the initial equilibrium distribution function is
canonical—specifically,
1 12
fo(x,u)=—(£> PO -x)0(),  (2.5)
Li 2

where B=1/T;, O(x) is the Heaviside step function, and
where, henceforth, we set Boltzmann’s constant (kz) and the
mass of the gas particles to 1. The product of step functions
guarantees that the gas is initially confined between x=0 and
x=L,.

Rather than solving Liouville’s equation, it is easier to get
a more direct solution. The derivation follows the ideas of
Refs. [10,22,23], and the solution is expressed as an infinite
sum over n, where n is the number of collisions a gas particle
makes with the piston. The details of the derivation are given
in the Appendix, and the final expression for f(x,u;?) is
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Slo,u;t) =O(L; + Vi—x)O(x)Y folx — ut,u) + fo(— x + ut,— u)

o

+ 2 [fo(=x+ut +2nL,2nV — u) + fo(x — ut

n=1

+2nL;,2nV + u) + fo(x — ut — 2nL;,u — 2nV)

+ fo(=x+ut-2nL,—u-2nV)] (, (2.6)

where the first and second terms on the right-hand side rep-
resent, respectively, free streaming and a single collision
with the back wall. The four terms in the sum account for,
respectively, an initially positive velocity resulting in n col-
lisions with the piston followed by free streaming, an ini-
tially positive velocity resulting in n collisions with the pis-
ton followed by a collision with the back wall, an initially
negative velocity resulting in n collisions with the piston
followed by free streaming, and an initially negative velocity
resulting in n collisions with the piston followed by a colli-
sion with the back wall. The two step functions in Eq. (2.6)
account for the fact that the gas is confined to the [0,L;
+Vt] interval during the expansion. This expression for
f(x,u;t) can easily be shown to obey Liouville’s equation
and satisfies both boundary conditions; cf. Egs. (2.3) and
(2.4) and the initial condition, Eq. (2.5). Note that, when V
— (0—i.e., the process is carried out reversibly—it is easy to
show (by converting the sums into integrals) that Eq. (2.6)
reduces to the appropriate equilibrium distribution function;
it is uniform in x and Gaussian in # with a reduced tempera-
ture T,[L;/(L;+V1)]?, and is in complete agreement with ther-
modynamics.

The initial equilibrium distribution function and the non-
equilibrium distribution function (r=4) for a piston of initial
length L;=10, piston velocity V=0.5, and initial temperature
T;=1 are shown in Fig. 1. As expected, the distribution func-
tion is affected by the expansion only in the vicinity of the
moving piston. We next show some examples of what we can
extract from this distribution function.

While the nonequilibrium process is occurring, the state
of the system can be described, at least in part, in terms of
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FIG. 1. The initial equilibrium
distribution function at r=0 is
shown on the left and the nonequi-
librium distribution function at ¢
=4 is shown on the right. Here,
L;=10, V=0.5, and T;=1 and the
moving piston is on the right. The
contours are drawn when f(x,u)
=0.005, 0.01, 0.015, 0.02, 0.025,
0.03, and 0.035.

local thermodynamic quantities [24], perhaps generalized in
various ways, if at all. For example, the local density, veloc-
ity, energy per particle, temperature, and entropy per particle
are well known (see, e.g., Ref. [21]) and are defined by

p(x,t)Ef duf(x,u;t), (2.7)
Ulx,t) = f‘” duMu, (2.8)
w  plxp
E(x,n) _ 2 flustu®
ksTi f o) (2:9)
o . _ 2
kg T(x ) = f PG UVl ) AN
o p(x,1)
and
S(x,1) _ fx duf(x,u;t)lnf(x,u;t)’ @.11)
kB — p(xat)
respectively. Note that
Ex) = l[T(x,z) + U (x,1)]. (2.12)
ky 2

Clearly, all but the entropy per particle will be given in terms
of sums of error functions upon the substitution of Eq. (2.6)
into Egs. (2.7)—(2.10).

We also can evaluate the boundary conditions obeyed by
the thermodynamic variables at the piston (x=L;+Vr). The
simplest boundary condition is the one for the velocity field
at the boundary, U(L;+Vt,t)=V, as expected from mass con-
servation. We show examples of the local thermodynamic
quantities profiles as a function of time and position in Fig.
2.

Before going on, we clarify a few points about the unit
conventions that we use. We have set the mass of the particle
and Boltzmann’s constant to unity; therefore, all quantities
that have the units of energy, the work (W) and the free
energy (A), and temperature all have the same units. It also

011133-3



BENOIT PALMIERI AND DAVID RONIS

B(x)/(kTy)
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FIG. 2. The local thermodynamics quantities defined by Egs.
(2.7)—(2.10) are shown as a function of time from =0 to t=4 for an
expansion where L;=10 and V=0.5. At =0, all quantities are uni-
form for 0<x<L; and zero elsewhere. The curves are equally
spaced at time intervals of 4/9. Larger values of 7 have larger non-
uniform regions.

follows that the particle’s velocity « and the piston velocity V
have units of yenergy. We use this convention for what fol-
lows.

At this stage, we consider the case where the piston stops
moving—e.g., when t=4. At this particular time, it is quite
clear that the system is far from equilibrium (as shown from
the inhomogeneous character of the quantities displayed in
Fig. 2). We define a local Helmholtz free energy per particle
as

A(x)=E(x) - T(x)S(x). (2.13)
We expect that the system will eventually come to equilib-
rium, provided we wait long enough, and when this happens,
the free energy, and all other thermodynamic quantities, will
be uniform in position. In particular, we expect that there the
final free energy per particle is
Ap=—T;In[L27T)"], (2.14)
where Ty and Ly are the final temperature and length, respec-
tively, and where Planck’s constant / has been set to 1. The
final temperature is easily obtained from the total final en-
ergy [cf. Eq. (2.12)] or equivalently from E,
=] éfE(x,4)p(x,4), which is conserved when the piston is at
rest and which is related to the temperature at equilibrium in
the usual manner (i.e., E;=T/2).

Perhaps surprisingly at first glance, the free energy of the
system, as computed from thermodynamics—i.e., Eq.
(2.14)—s not the one  obtained from A
=[ (L)fdxp(x,OO)A(x,OO), even at infinite time after the piston
has stopped moving. This happens because the entropy, as
defined above in Eq. (2.11), is the fine-grained entropy per
particle. As is well known [25,26], the total fine-grained en-

tropy is a constant of the motion, but the final entropy of the
system should equal
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1
Sp= o+ In[L,(27T)"*], (2.15)

which is obviously different from the initial entropy, unless
the expansion is done reversibly and adiabatically.

This well-known paradoxical result is resolved by intro-
ducing a coarse-grained entropy [25,26]. There are many
ways to do this, and in some of the works on the Jarzynski
equality, this is done by averaging out so-called bath degrees
of freedom [15]. The model here is too simple to allow for
this sort of coarse graining, and instead we consider an older
approach due to Kirkwood [27] and define a time-averaged
distribution function as

f(x,u;t)zlf
T t

and then use it to define a coarse grained entropy as

=+T

dsf(x,u;s), (2.16a)

_ L
5@ E_f ff dxduf(x,u;0)ln f(x,u:1). (2.16b)
kg 0 J

Note that this time-averaging procedure only makes sense at
long times after the end of the expansion, — %, where the
fine-grained distribution is approximately uniform (or, more
generally, slowly varying in time). Also, this time averaging
of the distribution function preserves the important property
that the energy is conserved after the expansion. Finally, it
can be shown that the time-averaged distribution is uniform
in position as 7— .

In Fig. 3, we show the time-averaged distribution function
for +=1000 and 7=100 with 2000 discretization points in the
average and we compare it with the fine-grained distribution
at the same time. Note that the structure appearing in the
fine-grained distribution is averaged out after coarse grain-
ing. More quantitatively, the coarse-grained entropy equals

§=3.811. This should be compared with §;=3.812 and §;
=3.722 as obtained from Egs. (2.15) and (2.11), respectively.

We conclude these comments on fine- and coarse-grained
entropy by pointing out that, within this model, the system
never quite comes back to equilibrium, even a long time after
the expansion (this is well known and has been pointed out
in Ref. [28]). If it did, the final fine-grained distribution
would be completely uniform in position and defect free.
This does not happen here because this one-dimensional
model does not contain any mechanism that will randomize
the velocities efficiently and does not have a strong separa-
tion of time scales.

Returning to the Jarzynski equality, the final free energy
appearing in Eq. (1.1), A, can be obtained from Eq. (2.14)
with T;=T} and the final equilibrium free energy can be ob-
tained from Eq. (2.13), provided we use a coarse-grained
entropy, or from Eq. (2.14) with the appropriate final tem-
perature (for this model 7,=2E). For the expansion param-
eters defined above, AA=0.466 as obtained from Egs. (2.14)
or (2.13) and AA;=-0.1823 (see Fig. 5 of the next section
for a more detailed comparison between AA and AA; when
the piston speed is varied). These differences are explained
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by the fact that the expansion of the gas is not isothermal. In
fact, for the parameters described above, the temperature
drops from 1.0 to 0.832.

Thus, while the Jarzynski equality is rigorously correct,
the above discussion shows that the equality does not pro-
vide much information about the nonequilibrium state of the
system, neither locally nor thermodynamically. Most signifi-
cantly, AA; is not the free energy change predicted by ther-
modynamics. Even if local thermodynamic equilibrium can
only be invoked approximately during the expansion process
[cf. Eq. (2.13)], the nonequilibrium distribution function is a
complete description of the nonequilibrium state and it car-
ries a lot of information that is hidden in the Jarzynski equal-
ity. Still, the Jarzynski equality holds. Recall here that it
relates the nonequilibrium average of ¢#" to the equilibrium
free energy difference between two states at the same tem-
perature, but with different lengths.

III. WORK BOUNDS

As pointed out by Jarzynski in his original papers [1,2],

the Gibbs-Bogoliubov-Jensen-Peierls inequality

(ePy = W) (3.1)

combined with the Jarzynski equality automatically implies
that the average work is bounded by

(W)<-AA,, (3.2)

strongly reminiscent of the usual bound for work in isother-
mal process found in thermodynamics. Again, recall that we
are using the convention that (W) is the work done by the
system on the surroundings. We now compare this bound
against the bound obtained from the laws of thermodynam-
ics. This is an important question, since the degree to which
the two bounds differ disproves the contention that Eq. (3.2)
is essentially a proof of the second law of thermodynamics
from mechanics (this is claimed in Refs. [11,28] and in the
review section of Ref. [29]).

On the other hand, the laws of thermodynamics also pro-
vide bounds for the average work; specifically, the first and
second laws imply that
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FIG. 3. The fine-grained distri-
bution function (on the left) is
compared with the time-averaged
distribution function that is later
used to calculate the coarse-
grained entropy according to Eq.
(2.16b). Here, t=1000 and 7
=100. The contours are drawn
when f(x,u)=0.005, 0.01, 0.015,
0.02, 0.025, 0.03, and 0.035.

(W)S—AA—f (dT S —dNu,,), (3.3)
where w,, is the opposing chemical potential and N is the
number of particles. This becomes the usual work bound in
terms of the Helmholtz free energy change for isothermal
and constant-N processes. In what follows, we will consider
processes which conserve the number of particles, as this is
appropriate for most of the numerical studies of the Jarzynski
equality, and drop the dN term in Eq. (3.3). In general the
J(dT S-dNp,,) term is not a state function and greatly re-
duces the utility of Eq. (3.3). Nonetheless, one can obtain a
useful bound for the work by noting that in an adiabatic
expansion,

(Wy=—AE (3.4a)

=— A - S,AT-T,AS =~ AA - SAT - T/AS.
(3.4b)

Since AS= 0 for a spontaneous adiabatic process, Egs. (3.4a)
and (3.4b) imply that

(W) < —max(AA + S ,AT),
a=i,f

(3.5)

where the inequality becomes an equality for reversible pro-
cesses. Although in principle AT can have any sign in an
adiabatic expansion, it must be negative for ideal gases, and
thus, Eq. (3.5) implies that

(Wy<-AA-SAT=W,,. (3.6)

It is straightforward to relate the Jarzynski bound to that
given in Eq. (3.5); specifically, it is easy to show that

It CWT,V

AA"‘SfAT: AA']+J dTV(—TL)(T—TZ), (37)
T;

where C\/(T, V) is the constant-volume heat capacity at the
final volume, V. The last integral is strictly positive for
AT#0, and this in turn means that the Jarzynski bound is
greater than the one implied by thermodynamics; cf. Eq.
(3.5).

This general result reproduces the expected work bounds
for the isolated harmonic oscillator model with an increasing
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natural frequency (w; that increases to w) discussed by
Jarzynski (cf. Fig. 2 of Ref. [2]) and for the above ideal gas
expansion. In both cases, when the work is done reversibly
and adiabatically S;=S;. This guarantees —(AA+S/AT) to be
the true upper bound to the work from Eq. (3.5). For the
harmonic oscillator model, AA;=T; ln(wf/w,-), while for the
ideal gas model, AA;=-T;In(L;/L;). In the two cases C, is
independent of temperature and the correction to AA; in Eq.
(3.7) becomes

T cuT,V T, T,
f arSTYD gy e Ty —1) .
1 T T, T,

l l

(3.8)

In both models, when the work is done reversibly and adia-
batically it is easy to show that

@
T; ] o
T;

. harmonic oscillator,
w.
(LY,
— | ideal gas.
Ly

(3.9)

When this is used in Eq. (3.8), it is easy to see that these
terms are, as expected, positive. Moreover, when they are
used in Eq. (3.7), the AA; term exactly cancels and one is left
with the usual thermodynamic work bound

w
1 - =L harmonic oscillator,
w;

Wrev = Ti L2 (310)
1 -—5 ideal gas;
2 9
Ly
hence, in both cases,
Wrevg_AAJ’ (311)

where the equality only holds in the trivial case where no
work is done on the system (i.e., wy=w; or L;=L;). These two
special cases were used to illustrate the more general result
given in Eq. (3.7) and to highlight the fact that Eq. (3.7) is in
quantitative agreement with the harmonic model described
by Jarzynski in Ref. [2]. In summary, the Jarzynski equality
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W/ (ksT.)

0.4F
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0] P T I i
0

FIG. 4. The average work W is obtained from Eq. (3.13) with
T=1, L;=10, and V¢=10. This is compared with the Jarzynski
bound, which is independent of the piston velocity.

alone does not guarantee Eq. (3.3) to be satisfied and, hence,
is not a proof of the second law.

The 1D gas model can further be used to calculate the
average work done for any expansion rate or piston velocity
V. Again, the average work, like the nonequilibrium distri-
bution function [Eq. (2.6)], can be expressed as a sum over
the number of collisions with the piston,

1/2 112 rL; * 2n+1)(L;/t+V)=xlt
(Wy=— 28 dx E du e‘ﬁué/2
0 0
(

L\ m 0 n=1 \J @n-1)(L 1+ V)=t
(2n+1)(Ly/t+V)+x/t

X (nugV —n*V?) + f dz,toe_ﬁ”g/2

(2n=1)(L/1t+V)+x/t

X(anV—n2V2)>, (3.12)
where x, and u are the initial position and velocities of the
gas particle. This is equivalent to the expression for (W)
obtained from the work distribution P(W), as defined by Eq.
(13) in Lua and Grosberg [10] [(W)=[;dWWP(W)]. Simple
but lengthy manipulations transform this expression into

(W)= EE {erfc<%[(2n + )(L;+ Vi) - L,»]) - erfc(%[(Zn +1)(L; + Vi) + Li])} + %{erfc(aV) - erfc(%(2L,< + Vt))}

BLin:l

L.

1

B

1

V22|12 a a o
+ —(—) > 2n+1) ?[(Zn +1)(L;+ Vi) —L,]erfc(;[(zn + 1)(L;+ Vi) —L,-]) - ?[(Zn + 1)(L; + Vi)
n=1

+ L,-]erfc(%[(Zn + 1)L+ Vi) + Li]) — 12~ @n+ DL+ Ve) = LT | =112 =) 20+ 1)(L; + Vi) + Li]z}

4+ —
L.

1

V2t<2
B

12
= aVerfc(aV) - g(2L- + Vit)erfc g(2L- + Vi) | - 2@V 12 0L+ Vi)? ,
t !

(3.13)
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where a=(8/2)"? and where erfc(x) is the complementary
error function. When the expansion is done reversibly, we
have aV<1, t>1 and aL;/t<<1. In this limit, the sums in
Eq. (3.13) can be replaced by integrals with the result that

Vi(Vt+2L))

(W)~ 28(L; + Vi)

+0(V), (3.14)

which, after some simple manipulations, agrees with Eq.
(3.10). For the rest of this section, we will consider the case
where L;=10 and V¢=10 (the length of the box doubles).

For finite piston velocities, the average work is calculated
using Eq. (3.13), keeping enough terms such that the error
falls within a small tolerance. In Fig. 4, the average work is
shown as a function of the velocity of the piston for 7;=1,
L;=10, and Vt=10. As V—0, it is seen that (W) tends to
W..,» Which, for these parameters, equals 3/8. This figure
clearly shows that W,,, (the straight dotted line in Fig. 4) is
the smallest upper bound to the process while the Jarzynski
bound —AA; sits above (straight dashed line in Fig. 4). Note
that, for large V (the tail region in Fig. 4), the Jarzynski
equality still holds even if (W) is very small. This seemingly
paradoxical results was investigated in Ref. [10]. Also note
that there is no contradiction between the results shown in
Fig. 4 and the results of Lua and Grosberg [10]. In fact, Fig.
6 of Ref. [10] shows that the average work becomes equal to
—AA; for small piston velocities. The problem there is that
they kept ¢ and L; constant and reduced V. There, as V tends
to zero, Ly—L, vanishes and there is no expansion; this is not
what is meant by the quasistatic limit. As stated after Eq.
(3.11), the two work bounds trivially agree in that limit.

AA is compared with AA; as a function of the piston
velocity in Fig. 5. Recall that the final temperature of the
system is determined from the work. The data show that AA
does not have a definite sign. Further, for very small V (i.e.,
a nearly reversible process), AA exhibits the largest differ-
ences from AA;. On the other hand, for large V, the two free
energy differences agree with each other. This result is easily
explained in terms of temperature changes. When the process
is slow, maximum work is done, and hence, the temperature
changes the most. On the other hand, when the piston is
pulled very quickly, only a small fraction of the particles can
collide with it, very little work is done, and the temperature
does not change. In this case, the free energy that appears in
the Jarzynski equality describes the final state appropriately.

In a recent article by Baule, Evans, and Olmsted [28], it
was shown that the ideal gas expansion, within an isothermal
model where the gas is effectively coupled to a thermostat,
does satisfy the Jarzynski equality and that —AA;=W,,, in
this case (note that this model does not fall into any category
of model for which the Jarzynski equality has been derived
rigorously).

We conclude this section with a short remark on the ex-
perimental consequences of our observations. In many ex-
periments, in particular in the famous experiment by
Liphardt et al. [12], it is often assumed that —AA is equal to
W,e,- Then, many realizations of the work are performed
irreversibly and (¢£") is computed and compared to e P24,
We have shown that, in general, this is not exactly true. In
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fact, when the temperature change is significant, W, and
—AA; can be very different. In the case of the experiment of
Liphardt et al., the work was done on a single RNA molecule
in solution, in which case, naively, the temperature change
should be small. This will be further investigated below.

IV. JARZYNSKI RELATION AND RESPONSE
THEORY

In the previous sections we showed that, even though the
Jarzynski equality is exactly satisfied for the 1D expanding
gas, AA,, in general, does not characterize the actual state of
the system at any time during or after the expansion process.
Further, the bound that we get from the Jarzynski equality
tells us less than what we already know from thermodynam-
ics. Therefore, one could wonder why the Jarzynski equality
works. In this section, we show how, in the context of re-
sponse theory, the terms that give rise to nonequilibrium ef-
fects cancel when (¢#") is computed and examine the aver-
age work done.

Consider a classical system that evolves under the Hamil-
tonian

H(t)=Hy+ H,(1), 4.1)

where H, and H,(z) are, respectively, explicitly time inde-
pendent and time dependent. In response theory, H () is
treated as a perturbation that has the general form

Hi=-3 f drA(r XY F{(r.0) = - A1) < F(),
J

(4.2)

where X" is the phase point, the A;(r,X")’s are local observ-
ables at position r that depend implicitly on time through the
motion of the particles, and the F j(r,t)’s are the external
fields. We assume that the F(r,)’s vanish for <0. By using
this form for the Hamiltonian, the right-hand side of the
Jarzynski equality becomes

P = (PAF) (4.3)

where

f dXNe PHo(- - +)
(G o= (4.4)

is a canonical average with respect to H,. This can be ex-
panded in powers of the external fields as follows:

- paa,= 3 Eamyeorrar, 4.5)

n=1 """+

where ({(-**)))o are cumulant averages [30]. We now show
how, to second order in the external fields, the Jarzynski
equality is satisfied.

The first step is to define the work done by the system in
terms of the external fields,
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2r
= I — A
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N
< r
o
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FIG. 5. The real free energy difference AA between the two
equilibrium states is compared with AA;. The conditions of the
expansion are the same as in Fig. 4.

W(r) = f dsA(s) x =2 &F(S) (4.6)
Next, we rewrite (¢} in terms of cumulants—i.e.,
1
(ePV0) = eXp(E ;B”((W(t)”») . (4.7)
n=1 "%

where the averages are nonequilibrium averages. Response
theory provides a formalism that can be used to calculate
these nonequilibrium averages to any desired power in the
perturbing Hamiltonian [30,31]. In particular, in the linear
regime,

(B@))y = (B - Bf ds((B(t = 5)A))o * F(s) + O(F?),
0

(4.8)

where B is some observable and B is the time derivative of B
using the reference Hamiltonian H,.

We will compare Egs. (4.5) and (4.7) to second order in
the external fields, and since W(r) is already linear in F, the
nonlinear response terms can be neglected. Hence, using Eq.
(4.8), ((W(t))) and ((W(r)?)) are evaluated up to second order
in the fields, giving

’ F
BUW(D) =B f ds(AGs))) 2 is)
0

= B{(ANo * F(1) - B2 f ds f s ((A(s =5 ) A
0 0
X (%)?F(s")

+0(F?)

)
P (4.9)

and
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<<W(t)2>>— = J ds f ds'((A(s)A(s"))o()?

« IF(s) dF (s")
ds  ds’

+O0(F?), (4.10)

where we have used that fact that F()=0 for <0 and that
the equilibrium canonical distribution function is stationary.
Equation (4.9) is, of course, an example of the usual
fluctuation-dissipation theorem result in a classical system
(see, e.g., Ref. [24] or [32]). In Eq. (4.9), the second term of
the second line can be integrated by parts using the fact that

(A(s = 5s")A)g =~ %((A(s =5 )A)o.  (4.11)

and we find that

F
(WD) = (Ao * F(1) + B f ast AR R (o) T

F(s) F (s")

—BLdSL ds"((A(s)A(s")o()? PR

= (A * FO) + S camy R

dF(s) oF(s')
ds  ds'
(4.12)

f ds f ds' (AA o ()2 2

The last term in this expression is strictly positive and is
responsible for any dissipation, and will be denoted as W,
below. The first two terms are just the ones expected using
perturbation theory on a quasistatic Hamiltonian and are
equal to AA; to O(F?), cf. Eq. (4.5).

With these observations, we see that the second cumulant
of the work [cf. Eq. (4.10)] is, up to factors of B, just the
dissipative part of the work, and thus, finally,

2
BN + E-wiry

2
= B(ANo = F(1) + %«AA»O(*)zF(t)Z +O0(F),
(4.13)

which is in agreement with the Jarzynski relation, again, to
second order in the external fields.

Nonlinear response theory could, in principle, be used to
prove the Jarzynski equality to all orders in the external
fields. Aside from the fact that this becomes messy very
quickly, there is no need for such a proof. After all, the
equality has already been proved by Jarzynski quite gener-
ally in Ref. [3]. The above approach is interesting because it
clarifies how the equality works by showing how apparently
dissipative terms cancel. In fact, even though ((W(r))) itself
is a nonequilibrium average that depends very much on how
the work is performed, the dissipative terms [the ones con-
taining JF(s)/ds] in Eq. (4.7) are exactly canceled by the
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next term in the work cumulant expansion, Eq. (4.10). Also
note that this cancellation only works if the 8 in Eq. (4.7)
equals the one that appears in the initial canonical distribu-
tion function. We have checked that, at least to third order in
the fields, all the (F®) Jarzynski terms are contained in
(W(r)); the rest of the terms in (W(r)) are dissipative in the
sense that they explicitly depend on the rates of change of
the F’s [e.g., as in the last term on the right-hand side of Eq.
(4.12)].

The response theory result seems to contradict what we
found thermodynamically or for the ideal gas expansion con-
sidered in the preceding section: namely, there, even in the
quasistatic or reversible limit, the Jarzynski bound was an
upper bound to that predicted by thermodynamics. Here the
response theory suggests that the Jarzynski bound is satisfied
exactly in the quasistatic limit—i.e., where dF(s)/ds— 0.

There is no contradiction for several reasons. The first is
trivial. The perturbing potential should be considered as a
moving finite step potential with height V, that is set to in-
finity at the end of the calculation (for a discussion of the
orders of limits, see Ref. [9]). Response theory assumes that
the perturbing potential is small, something that is not the
case in Sec. III.

The second reason why there is no contradiction is more
subtle and requires us to be more careful defining what is
meant by a quasistatic process. A quasistatic process is one
that takes place at a rate which is much slower than all other
dynamical processes taking place in the system. Many-body
systems have collective modes corresponding to various me-
chanically conserved quantities, and these will evolve on ar-
bitrarily long time scales (governed by the wavelength of the
mode). As we now show, there are no real quasistatic pro-
cesses in the sense of the Jarzynski equality unless some
addition assumptions are made about the nature of the per-
turbation applied to the system.

We start by introducing a projection operator [33,34] P
defined as follows:

PA = ((AC)) * ((CC))™" = C, (4.14)

where C is a column vector containing the densities of
slowly evolving variables. At the simplest level C must con-
tain the densities of conserved quantities (e.g., number, en-
ergy, and momentum densities in a one-component system)
but could also contain broken-symmetry variables [32], as
well as multilinear products of these fields should mode-
coupling effects be important. {({(--*))) is a cumulant average
taken in the reference system, and for the rest of this section,
we omit the zero subscript.

Well-known projection operator identities can be used to
express ((A(r)A)) in terms of correlations of slow and fast
quantities (here, we simply state the result since these tech-
niques are standard). After Laplace transforming in time, we
obtain

(A(s)A) = (A¥(s)A%) + ((AC)) - ((A¥(5)CF))) = ((CC))™"
% ((C(s)C)) * ((CC)™"  ((CA))

+ (CH(s)AR), 4.15)
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where the tilde denotes a Laplace transform in time, s is the

Laplace transform frequency, and A(s) is the Laplace trans-
form of

A1) = =Pl - P)A. (4.16)

This object is referred to as the dissipative part of A and is
orthogonal to the space of slow variables for all times; hence,
their correlations should decay on microscopic time (and
length) scales. In terms of the Laplace transforms, this means
that, for long-time phenomena—i.e., small s—only the fre-

quency dependence of ((C(s)C)) need be considered and will
give all the long-time dependence. All the other correlations
can be evaluated at s=0; indeed, for the standard hydrody-
namic variables, the ((C(s)C)) have been studied extensively
[32,35].

We now can analyze the so-called dissipative term in Eq.
(4.12). Remember that in this term, there are two implicit
spatial integrations and for translationally invariant equilib-
rium systems it is convenient to switch to a Fourier repre-
sentation in space, thereby obtaining

B ! i dk
Wy=- 5[0 dtlfo dfzf (27TL)d<<Ak(tl —-1)A )

:F—k(tl)Fk(t2)

! i dk .
~= Bfo dtlfo dlzf m[«Af{(h - fz)Afk»

+ ((AC 1) — ((ALO)CE)
X ({CC ™ {(Cul(1) = 1) C_IX(CLC i)™

X (UCKAL) + (CLOA N F (1) Filnr),
(4.17b)

(4.17a)

where d is the dimension of space and L? is the volume of
the system. The second relation follows by using Eq. (4.15)
and ignoring the frequency dependence of the dissipative
correlations as discussed above. Within the context of the
projection operator approach, this is valid provided that the
F’s do not evolve on fast (i.e., microscopic) time scales.
We now examine Eq. (4.17b) for several cases. The sim-
plest is when the perturbing fields are spatially uniform—i.e.,
Fe()=LA(k)F (), where A(k) is a Kronecker & [strictly
speaking, we have to turn the Fourier integrals in Eq. (4.17b)
into Fourier sums by letting [dk — (277/L)“S, to handle this

case]. Since Cy(1)=ik-J\, where the J,’s are fluxes, it is easy
to show that

Wy~ = BUAL(0)AD): f dnF(1)F () = g«ATCT»
0

X{(CrCr)) "(CrAD):F(1)F (1),

where the subscript “T” denotes the total or space integral
(i.e., k—0 limit) of subscripted quantity and where we have
assumed that the decay of the <<A%(t)A?’r)> correlation func-

(4.18)
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tion is on a much faster time scale than any characterizing

the Fs.
The first term on the right-hand side of Eq. (4.18) is well

behaved provided that Fis square integrable and in particular
should vanish in the quasistatic limit [F(1)—0, t— o0, keep-

ing F()t constant]; the remaining terms clearly do not vanish
and are comparable to the O(F?) terms in the Jarzynski free
energy difference [cf. Eq. (4.13)]. Moreover, these terms are
negative semi-definite, and thus, the response theory also
shows that —AA; is an upper bound to the actual work done,
even when the process is quasistatic. Indeed, when Eq. (4.18)
is used in Eq. (4.12), the latter becomes

(W)= (ADy () + S caiaD Ry

wMMWWfM%%w,@m
0

which shows that it is only the parts of A that are orthogonal
to the conserved quantities that contribute to the quasistatic
work at O(F?).

Within the response approach, in order that —AA; equals
the average work done quasistatically, the last terms in Eq.
(4.18) must vanish. Since ((C;Cr)) is positive definite, the
only way to eliminate these terms for nonzero F(f) is to have

KCpe| _ KAp)

IBF |gy 98D
where (---)p is a canonical average using the Hamiltonian
Hy—Az-F and B® is a column vector containing the usual
conjugate variables to C found in the theory of fluctuations
(e.g., —B for energy, Bu for number, etc.). In other words, the
quasistatic perturbation does not couple to the conserved
variables and, hence, in the linear response regime, does not
change the latter’s averages. For us, this implies that the
process must be strictly isochoric and isothermal. It is inter-
esting to note the strong similarity of this criterion to one
made by one of us some time ago [36] concerning the inde-
pendence of the choice ensemble in response treatments of
relaxation experiments.

While the preceding analysis at k=0 is appropriate when
discussing the thermodynamics of large systems, it is easy to
imagine other types of experiments. One such setup is where
the perturbing fields are periodic in space. For a monochro-
matic (in space) perturbation the relevant time scales to com-
pare with are those contained in ({C\(1)C_y)), and while
these can be very long, they are finite for nonzero wave
vectors. In this case, W; would vanish in the quasistatic limit
to leading order in the response theory. We have qualified
this last statement because higher-order terms in the response
theory for W, will allow for mode couplings to zero wave
vector and may result in problems like those just shown. This
will be investigated in a later work.

Finally, we consider one last example, one perhaps more
appropriate to some of the recent optical tweezers experi-
ments: namely, one where the probe-field is localized—i.e.,
F(r,)=8(r)F(z). We consider the small-wave-number con-

(CrAq) = 0, (4.20)
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tributions to W, using hydrodynamic approximations for the
{(Ck(r)C_y)) correlations. The most important terms that re-
sult from this analysis are those that decay slowest in #;—1,,
and these are those corresponding to diffusive modes (e.g.,
thermal or mass diffusion) with time dependence e Takln—na,
All other correlations can be evaluated at zero wave vector.

With this, the hydrodynamic contribution to W, can be writ-

ten as
t 1
Ww—ﬂEfdrlf dt
a 0 0

W (t)V (1) SN d/2,T k2]t — 1))
2(27T)d(ra|[1 - t2|)d/2 ’

where S,=27?/T'(d/2) is the area of a d-dimensional unit
hypersphere, I'(x) is the gamma function, y(x,y) is the in-
complete gamma function, the sum is over all diffusive
modes, each with diffusivity ', k. is a large-wave-number
spherical cutoff necessitated by ignoring the k£ dependence of
the correlation functions, and

(4.21)

W (1) = uL{(C1Cr)) ' (CrANF (1),

where a hydrodynamic approximation for ((Cy(r)C_y)) was
used—i.e.,

(4.22)

(4.23)

(CNC) ~ L7Z uyeoaT ],
(2%
where U, is the amplitude of the ath mode.
Only purely diffusive modes (those with w,=0) are kept.
Clearly, this part of the so-called dissipative contribution to
the work contains slowly decaying (in-time) contributions,
and to get a feel for how important they are, we now assume
constant rates; i.e., we assume that the W,’s are constant in
time. With this, the integrals in Eq. (4.21) can be done and
give

Wy~ = 2 BV RS KT ). (4.24)
where
_ Sa 2x°yd2,x) e F-1
fld.x) = (277)‘1( (d=2)(d-4) * xAd-4)
e +d—4 ) 425
T d-2)d-4)) (4.25)

At long times, specifically for kfF o> 1, it follows from this
last result that
274 for d < 2,
W, > |¥, 2 ¢ In(r) for d =2,
“ tford>?2.

(4.26)

In the quasistatic limit—namely, F—0, t—o» keeping Fr
constant—this last result implies that W, vanishes and the
Jarzynski bound for the work becomes an equality for local-
ized probes in any spatial dimension. However, note that W,
decays more slowly, all other things being equal, for d=<2.

011133-10



JARZYNSKI EQUALITY: CONNECTIONS TO...

In summary, response theory shows that the free energy
change defined by the Jarzynski equality in general is not the
state function that arises in work bounds in thermodynamics,
even for quasistatic processes. Instead it is an upper bound to
the well-known thermodynamic ones. Under special
conditions—namely, where there is no coupling between the
perturbation and macroscopic state variables—the two
bounds become equivalent, but as we have shown, this is
probably not the case in macroscopic, nonisothermal [and
constant chemical potential, total density, etc., processes; cf.
Eq. (4.20) and the discussion that follows]. One important
exception to this result is for broad-spectrum (in wave vec-
tor) probes—i.e., ones that are spatially localized. Basically,
there, the couplings to the very long-wavelength slow modes
are weak and a quasistatic limit is possible. In some sense
this is similar to the observation in Sec. III for the limit
L¢/Li— 1, although both here and there, the amount of work
done becomes small.

V. DISCUSSION

In this article, we have studied the Jarzynski equality both
generally and within the context of a well-understood sys-
tem, the one-dimensional expanding ideal gas. We chose this
latter system because it has been shown that the Jarzynski
equality is satisfied unambiguously for all choices of system
length and piston velocity. The simplicity of this system al-
lowed us to obtain a general form for the full distribution
function at any time during and after the expansion. There-
fore, the nonequilibrium state of this system is completely
known at all times.

We showed that, although the Jarzynski equality is correct
and clearly shows that (¢#V) is an invariant, equal to a ratio
of equilibrium canonical partition functions, its applicability
to nonequilibrium phenomena, and in particular to nonequi-
librium thermodynamics, is more subtle. First, at the end of
the expansion process, the distribution function is not ca-
nonical, and moreover, quantities like the free energy and
entropy cannot be defined in terms of their standard equilib-
rium definitions. Second, if equilibrium is ever attained (re-
member that our model system never quite reaches equilib-
rium), the free energy of the final state will, in general, be
different than what can be suggested from the Jarzynski
equality. This is a consequence of the final temperature that
is usually different than the initial one. In fact, in reply to the
criticism of Cohen and Mauzerall [13], Jarzynski [3] pointed
out that the final free energy that appears in the Jarzynski
equality will be the one of the final state, provided we wait
long enough and that the overall system contains a large
enough bath such that the temperature change can be as-
sumed to be zero. This argument is correct, but should be
taken with caution. In fact, there is no limit to the external
work done and it is always possible to perform enough work,
on a macroscopic region of the system, such that, even with
a large bath, the temperature of the full system changes. In
the experiment of Liphardt er al. [12], where the work is
done on a single molecule in solution, it would seem safe to
assume that the final and initial temperatures are the same.
This also happens, not surprisingly, for our model system:
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when the system is very large compared to the expansion,
L>Vt, the temperature change tends towards zero [recall
Egs. (3.9)]. Fundamentally, however, the 1D expanding gas
model represents an adiabatic process and there must be
some temperature change, unless the gas is coupled to a ther-
mostat, in which case, AA; has been shown to be equal to the
actual energy change of the system [28].

In Sec. III, we compared the bound implied by the Jarzyn-
ski equality against a thermodynamic bound which is ob-
tained from the first and second law of thermodynamics. As
shown by Eq. (3.7) or (3.11), the Jarzynski bound is an upper
bound to the thermodynamic upper bound to the work and,
hence, is does not prove the second law of thermodynamics.
The two bounds become close to each other in the limit
where the extent of the expansion is small. This is another
consequence of the fact that the work done can produce
changes in key quantities that define the ensembles in the
initial and the final equilibrium states [e.g., temperature; cf.
Eq. (4.20) and the subsequent discussion].

We also showed that the statement that —AA ;=W,,, can be
incorrect even in the quasistatic limit and, in particular, is
wrong for our system (see, e.g., Fig. 4). This is an important
observation since this assumption is often made in experi-
ments. In the experiment by Liphardt et al., this assumption
may be justified because the work is done on a very small
part of the system. On the other hand, as we have shown in
Eq. (4.19), any coupling to long-wavelength fluctuations of
conserved quantities leads to a negative correction to W,.
Liphardt et al. measure quantities like —AA;~(W)guasistatics
hence, if their apparatus is not the ideal J-function coupling
considered in the preceding section, but contains some small,
even O(1/N), coupling to the conserved quantities, Eq.
(4.19) predicts that they should obtain

Wig=Ware) = §<<ATCT>><<CTCT>>’1<<CTAT>>:F(t)F(t)
(5.1)

in the linear response regime (here we are using the notation
and sign convention of Liphardt et al. for the work). Thus a
quadratic, negative correction should be seen; interestingly,
this is exactly what is shown in Fig. 3A of Ref. [12], al-
though there the authors dismiss this as experimental error. If
this is the explanation, the coupling must clearly arise from
the macroscopic parts of the experimental device, here prob-
ably associated with the piezoelectric actuator used to pull
the molecule.

A similar observation was made by Oberhofer et al. [16]
in their numerical study of equilibrium free energies using
the schemes based on the Jarzynski equality and on the Wi-
dom insertion method in a soft sphere liquid. There, (W,
— W, ,ep) Was also shown to be nonzero and this result was
explained in terms of adiabatic invariants. Numerically, they
obtained a definite sign for (W;z—W, ) which agrees with
our prediction. The argument is basically an example of
more general problems encountered in ergodic theory and in
the construction of ensembles when phase space is metrically
decomposable [36,37]. The analysis presented in Sec. IV for
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systems where the work couples to the densities of conserved
quantities offers a quantitative estimate for the difference.

We highlight the fact that —AA;# W,,, by briefly investi-
gating the Jensen-Peierls-Gibbs-Bogoliubov inequality
which can be proved as follows. By defining a function
h(N) =1In(e™) it follows that

dh(N) (Wery _
T @M =(W))

(5.2)

and
dzh()\) ~ <W2€)\W> <We)\W>2 _
d)\2 - <e)\W> <e}\W>2 -
where (((--+))), is a cumulant average. Using the Jarzynski

equality and the two averages defined above, it is straightfor-
ward to show that

Wy, (5.3)

B
- BAA; = B(W) oo+ f AN(WDN(B-N).  (5.4)
0

Because the second term on the right-hand side (we call it
the work fluctuation term) is strictly positive, we immedi-
ately have B(W)\_o<—-BAA; ((W), is just the usual aver-
age work). Hence, (W)=—AA; only when the work fluctua-
tions are zero for all \. In particular, as stated in Ref. [29],
the fluctuations have to be zero in the original canonical
ensemble when A=0. These fluctuations can be nonzero even
if the work is done quasistatically, as we showed in Sec. I'V.
In fact, we showed that the fluctuation terms, to lowest order
in the external fields, will differ from zero in the quasistatic
limit only if the system variables A(r,z), to which the fields
couple, are orthogonal to the C(r,7)’s, the conserved quanti-
ties, or if the fields have negligible F;_y(f) components. Re-
call that, in a case of microscopically localized field, the
F=0(¢) contribution is small and the quasistatic limit is at-
tainable.

We also showed that the true free energy change of the
system, for a fixed change in volume, tends to a free energy
change that appears in the Jarzynski equality, AA;, when the
expansion is very fast (the piston velocity V is large). This
result is expected, since, within this model, the average work
tends to zero for large piston velocities and produces a neg-
ligible temperature change.

Finally, the criticism we wanted to raise in this paper is
not against the Jarzynski equality, which we believe to be
correct, but rather to how it is often interpreted. We worked
on a system that falls in a class described by Hamiltonian
dynamics, which is fundamentally adiabatic since the Hamil-
tonian could, in principle, include everything (in the lan-
guage of Jarzynski, everything means the system and the
bath). We showed that, for that class of systems, the Jarzyn-
ski equality can lead to erroneous conclusions. In particular,
the free energy change that appears in the equality can have
little to do with the actual nonequilibrium thermodynamics
free energy computed by standard methods (even when the
system equilibrates) and the Jarzynski equality does not con-
tain any information about the nonequilibrium state of the
system. Further, we want to reemphasize that the Jarzynski
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equality cannot be used as a proof of the second law of
thermodynamics because the bound that it provides is above
the thermodynamical upper bound to the work.
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APPENDIX: NONEQUILIBRIUM DISTRIBUTION
FUNCTION

As shown in Ref. [10], the positive initial velocity ug
interval that result in n collisions with the piston at a later
time ¢ is

(2” - ])(Ll/l+ V) —.X()/[ < Uy < (2” + ])(Ll/t+ V) _.xO/t,
(A1)

where x, is the initial position of the gas particle. For such a
case, the final velocity is

u=2nV-u, (A2)

and the final position

X ==xo—ugt+2n(L; + V). (A3)

When the final position is smaller than zero, it means that
there has been a further collision with the hard wall after the
last collision with the piston. In such a case, the sign of the
final velocity and position in Egs. (A2) and (A3) is reversed.
For negative initial velocities, the interval that leads to n
collision is

=2+ DLt + V) = xplt <ug<-Q2n—1)(L/t+ V) —xy/t.

(A4)
In this case, the final velocity and position are
u=2nV+u, (A5)
and
X =xo+upt +2n(L; + Vi). (A6)

Again, if this results in a negative position, the sign of the
last two equations is reversed.

The above results can be used to obtain the final distribu-
tion function from an integration over the initial velocities
and position weighted by the initial distribution function,
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S usr) = f dx f dugfo(xo,u)) OLJ1+ V= xo/t — up) O(xp/t + ug + L/t + V) X [O(xq + ugt) Su — ug) 8x — x — upt) + O(=x,

©

—uot) Su + ug) Sx + xo + ugt) | + > {O((2n + DL/t + V) = xo/t — ug) O(xp/t + ug— 2n — 1) (Lt + V)) X [O(=x,

n=1

—upt +2n(L; + V1)) S(u — 2nV = ug)) 8x + xo + ugt — 2n(L; + V1)) + O(xg + ugt — 2n(L; + V1)) S(u + (2nV — ug)) S(x
—xo—upt +2n(L; + V1)) 1+ O(= 2n — 1)(Li/t + V) = xp/t — up) O (xp/t + ug + 2n + 1)(L/t + V)) X [O(xy + upt + 2n(L;
+ V1) 8(u — (2nV + ug)) 8(x — xo — ugt = 2n(L; + Vi) + O(=xo — upt — 2n(L; + V1)) S(u + 2nV + ug)) 8(x + xo + upt

+2n(L;+ VO)]} (-

After the integrals are performed, Eq. (2.6) is obtained.
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